

(Bidirectional)

DATASHEET

Return to the Webpage

Features

- Solid-State
- High speed
- Ultra-high reliability
- Low insertion loss
- Compact

Applications

- Optical blocking
- Configurable operation
- Instrumentation

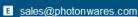
The NS Series 1x16 high-speed fiber optic switch is constructed by cascading fifteen 1x2 switches. It connects optical channels by redirecting an incoming optical signal into a selected output optical fiber. This is achieved using patented nonmechanical configurations with solid-state all-crystal designs, which eliminate the need for mechanical movement and organic materials. The NS fiber-optic switch is designed to meet the most demanding switching requirements of ultra-high reliability, fast response time, and continuous switching operation. The switch is intrinsically bidirectional and selectable for polarization-independent or polarizationmaintaining by the fiber type. The device package inside a 1U network rack, that operates with a 100-220V AC and 15 independent TTL control signal inputs in the front. The rise and fall times are intrinsically related to the crystal properties, and the repetition rate is associated with the driver. Some frequency response sections exhibit poor frequency response due to device resonances. The NS devices are shipped mounted on a tuned driver. The NS series switches respond to control signals with any arbitrary timing at frequencies from DC up to MHz. The electrical power consumption is related to the repetition rate at which the switch is operated. For 1550nm band, adding an amplifier is an option to form a lossless switch.

Specifications

Par	ameter	Min	Typical	Max	Unit
Central Wavelength		780		2000	nm
	1260~1650nm		9	10	dB
Insertion Loss [1]	960~1260nm		13	15	dB
	760~960nm		20	24	dB
Cross Talk [2]		20	25		dB
Durability		10 ¹⁴			cycles
Polarization Dependent Loss			0.20	0.35	dB
IL Temperature Depend	Temperature Dependency		0.25	0.5	dB
Polarization Mode Dispe	ersion		0.1 0.3		ps
Return Loss		45	50		dB
Response Time (Rise, Fa	II)	30	300		ns
Repetition Rate [3]		DC	100		kHz
Operating Temperature		-5		70	°C
Optical Power Handling [4]			0.3	20	W
Storage Temperature		-40		85	°C

Notes:

- [1] Excluding connectors.
- [2] ±25nm.
- [3] Standard driver. High repetition rate (up to 300 kHz) is available with special circuit, please call us.
- [4] Defined at 1550nm. For the shorter wavelength, the handling power may be reduced. High power version (up to 5W) for 1310nm/1550nm is available; please call us for more information.


Note: The specifications provided are for general applications with a cost-effective approach. If you need to narrow or expand the tolerance, coverage, limit, or qualifications, please [click this <u>link</u>]:

Warning: This is an OEM module designed for system integration. Do not touch the PCB by hand. The electrical static can kill the chips even without a power plug-in. Unpleasant electrical shock may also be felt. For laboratory use, please buy a Turnkey system.

Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.

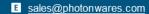
Rev 10/21/24

P +1 781-935-1200

(Bidirectional)

DATASHEET

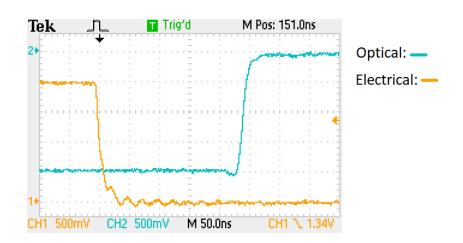
Optical Path


Driving Table:

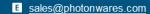
Ontical Dath	SMA Connector Number						
Optical Path	1	2	3	4	5		
Input → Output 1							
Input → Output 2			+				
Input → Output 3		+					
Input → Output 4		+		+			
Input → Output 5	+						
Input → Output 6	+				+		

Note: "+" 5 VDC

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.


(Bidirectional)

Mechanical Drawing (mm)


*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

Typical Speed Response Measurement

© Photonwares Corporation

(Bidirectional)

DATASHEET

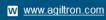
Ordering Information

Prefix	Туре	Wavelength	Optical Power	Repetition	Fiber Type	Amplifier	Package	Connector
NSSW-	1x16 = A16 Low-drift 1x16 = L16	1060 = 1 L Band = 2 1310 = 3 1550 = 5 780 = 7 850 = 8 980 = 9	300mW = 1 5W = 2 Special = 0	100kHz = 1 200kHz = 2 300kHz = 3 Special = 0	SMF-28 = 1 PM1550 = 5 HI1060 = 2 HI780 = 3 Special = 0	Non = 1 Yes = 2 Special = 0	1U Rack = 1 Special = 0	None = 1 FC/PC = 2 FC/APC = 3 LC/PC = 7 LC/APC = 9 E2000 APC = A LC/UPC = U Special = 0

Note:

□ PM1550 fiber works well for 1310nm

Fiber Core Alignment

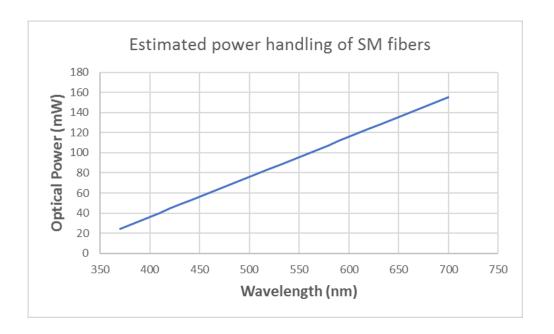

Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

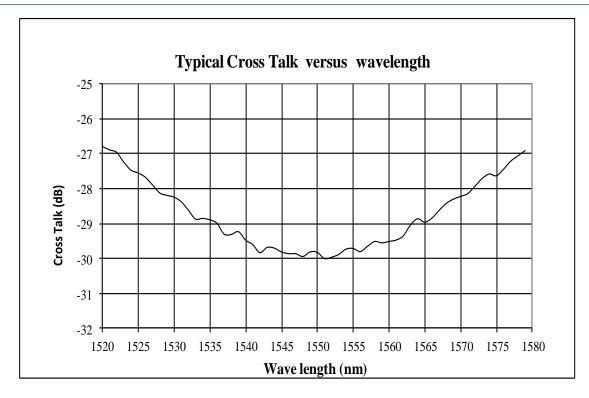
Fiber Cleanliness

Fibers with smaller core diameters (<5 µm) must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

Maximum Optical Input Power

Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650nm. We produce a special version to increase the how handling by expanding the core side at the fiber ends.




(Bidirectional)

Optical Power Handling vs Wavelength For Single-Mode Fibers

Typical Wavelength Dependence

(Bidirectional)

DATASHEET

Q & A

Q: Does NS device drift over time and temperature?

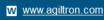
A: NS devices are based on electro-optical crystal materials that can be influenced to a certain range by the environmental variations. The insertion loss of the device is only affected by the thermal expansion induced miss-alignment. For extended temperature operation, we offer special packaging to -40 -100 °C. The extinction or cross-talk value is affected by many EO material characters, including temperature-dependent birefringence, Vp, temperature gradient, optical power, at resonance points (electronic). However, the devices are designed to meet the minimum extinction/cross-talk stated on the spec sheets. It is important to avoid a temperature gradient along the device length.

Q: What is the actual applying voltage on the device?

A: 100 to 400V depending on the version.

Q: How does the device work?

A: NS devices are not based on Mach-Zander Interference, rather birefringence crystal's nature beam displacement, in which the crystal creates two different paths for beams with different polarization orientations.


Q: What is the limitation for faster operation?

A: NS devices have been tested to have an optical response of about 300 ps. However, practical implementation limits the response speeds. It is possible to achieve a much faster response when operated at partial extinction value. We also offer resonance devices over 20MHz with low electrical power consumption.

Operation Manual

- 1. Connect a control signal to the SMA connector on the PCB.
- 2. Attach the accompanied power supply (typically a wall-pluggable unit).
- 3. The device should then function properly.

Note: Do not alter device factory settings.

